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Introduction to dynamic conditional score (DCS) models

1. A uni�ed and comprehensive theory for a class of nonlinear time series
models in which the conditional distribution of an observation may be
heavy-tailed and the location and/or scale changes over time.
2. The de�ning feature is that the dynamics are driven by the score of the
conditional distribution.
3. When a suitable link function is employed for the dynamic parameter,
analytic expressions may be derived for (unconditional) moments,
autocorrelations and moments of multi-step forecasts.
4. A full asymptotic distributional theory for ML estimators can be
obtained, including analytic expressions for the asymptotic covariance
matrix.
***
Harvey, A.C. Dynamic models for volatility and heavy tails. CUP. 2013
http://www.econ.cam.ac.uk/DCS
Creal et al (2011, JBES, 2013, JAE).

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 2 / 84



Introduction to dynamic conditional score (DCS) models

The class of dynamic conditional score models includes models for :
1. changing location observed with an error which may be subject to
outliers,
2. changing conditional variance,
3. changing location/scale for non-negative variables,
4. changing correlation and association
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Introduction to dynamic conditional score (DCS) models

1. Why the score?
2. Robustness, Student�s t and EGB2
3. Asymptotic properties
4. Scale
5. Correlation and copulas
6. Kernels and quantiles
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Why the score ?

Suppose that at time t � 1 we have bθt�1 the ML estimate of a parameter,
θ. Then the score is zero, that is

∂ ln Lt�1(θ)
∂θ

=
t�1
∑
j=1

∂ ln `j (θ)
∂θ

= 0 at θ = bθt�1. (1)

where `j (θ; yj ) = f (yj ; θ). When a new observation becomes available, a
single iteration of the method of scoring gives

bθt = bθt�1 + 1

It (bθt�1) ∂ ln Lt (θ)
∂θ

= bθt�1 + 1

It (bθt�1) ∂ ln `t (θ)
∂θ

where It (bθt�1) = t.I (bθt�1) is the information matrix for t observations
and the last line follows because of (1).
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Why the score ?

For a Gaussian distribution a single update goes straight to the ML
estimate at time t (recursive least squares).

Remark
We may choose a link function so that the information quantity does not
depend on θ.

As t ! ∞, It (bθt�1)! ∞ so the recursion becomes closed to new
information. If it is thought that θ changes over time, the �lter needs to
be opened up. This may be done by replacing 1/t by a constant, which
may be denoted as κ.
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Why the score ?

Thus bθt = bθt�1 + κ
1

I (bθt�1) ∂ ln `t (θ)
∂θ

With no information about how θ might evolve, the above equation might
be converted to the predictive form by letting θt+1jt = bθt so

θt+1jt = θt jt�1 + κ
1

I (θt jt�1)
∂ ln `t (θ)

∂θ

For a Gaussian distribution in which θ is the mean and the variance is
known to be σ2, the recursion is an EWMA because

1
I (θt jt�1)

∂ ln `t (θ)
∂θ

= yt � θt jt�1
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Why the score ?

If there is reason to think that the parameter tends to revert to an
underlying level, ω, the updating scheme might become

θt+1jt = ω(1� φ) + φθt jt�1 + κ
1

I (θt jt�1)
∂ ln `t (θ)

∂θ

where jφj < 1. This �lter corresponds to a �rst-order autoregressive
process.
More generally we might introduce lags so as to smooth out the changes or
allow for periodic e¤ects. This leads to the formulation of a QARMA �lter.
The score can also be motivated by a conditional mode argument based on
smoothed estimates, θt jT . See Durbin and Koopman (2012, p 252-3) and
Harvey (2013, p 87-9)
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Why the score ?

The use of the score of the conditional distribution to robustify the KF
was originally proposed by Masreliez (1975). However, it has often been
argued that a crucial assumption made by Masreliez (concerning the
approximate normality of the prior at each time step) is, to quote Schick
and Mitter (1994), �..insu¢ ciently justi�ed and remains controversial.�
Nevertheless, the procedure has been found to perform well both in
simulation studies and with real data.
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Why the score ?

(1) The attraction of treating the score-driven �lter as a model in its own
right is that it becomes possible to derive its properties and to �nd the
asymptotic distribution of the ML estimator.
(2) Seen in this way, the justi�cation for the class of DCS models is not
that they approximate corresponding UC models, but rather that their
statistical properties are both comprehensive and straightforward.
(3) An immediate practical advantage comes from the response of the
score to an outlier.
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Dynamic location model

yt = ω+ µt jt�1 + vt = ω+ µt jt�1 + exp(λ)εt ,

µt+1jt = φµt jt�1 + κut ,

where εt is serially independent, standard t-variate and

ut =

 
1+

(yt � µt jt�1)
2

νe2λ

!�1
vt ,

where vt = yt � µt jt�1 is the prediction error and ϕ = exp(λ) is the
(time-invariant) scale.
ut ! 0 as jy j ! ∞. In the robustness literature this is called a
redescending M-estimator. It is a gentle form of trimming.
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Figure: Impact of ut for tν (with a scale of one) for ν = 3 (thick), ν = 10 (thin)
and ν = ∞ (dashed).
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For the local level DCS-t �lter,

yt = µt jt�1 + vt , (2)

µt+1jt = µt jt�1 + κut .

Since ut = (1� bt )(yt � µt jt�1), re-arranging the dynamic equation gives

µt+1jt = (1� κ(1� bt ))µt jt�1 + κ(1� bt )yt , t = 1, ...,T . (3)

A su¢ cient condition for the weights on current and past observations to
be non-negative is 0 < κ � 1. But the restriction that κ � 1 is much
stricter than is either necessary or desirable.
De Rossi and Harvey (2009) show that when the dynamic equation has a
unit root, the conditional mode argument leads to smoothed estimates
that satisfy

T

∑
t=1
u(yt , µt jT ) = 0.
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Life beyond the score

May have another criterion function, ρ(θ) = ∑ ρ(θ; yt ) eg sum of squares
or a robust function (M-estimator).
Dynamics then driven by its derivative, ρ0(θ; yt ) = ∂ρ(θ; yt )/∂θ.

Or have an estimating equation to be satis�ed for estimating θ, that is

T

∑
t=1
g(θ; yt ) = 0

where g(yt , θ) = ρ0(θ; yt ) when it comes from a criterion function.
When θ is dynamic, g(θt jt�1; yt ) replaces the score, ut .

Alternatively consider choosing dynamic parameters so that
∑T
t=1 g(θt jT ; yt ) = 0, where θt jT is a smoothed estimator.
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GARCH

The generalized autoregressive conditional heteroscedasticity (GARCH)
model, introduced, as ARCH, by Engle (1982) and generalized by
Bollerslev (1986) and Taylor (1986), is the classic way of modeling
changes in the volatility of returns. It does so by letting the variance be a
linear function of past squared observations. The �rst-order model,
GARCH (1, 1), is

yt = σt jt�1εt , εt � NID(0, 1) (4)

and
σ2t jt�1 = δ+ βσ2t�1jt�2 + αy2t�1, δ > 0, β � 0, α � 0. (5)

The conditions on α and β ensure that the variance remains positive.
The sum of α and β is typically close to one and the integrated GARCH
(IGARCH) model is obtained when the sum is equal to one. The variance
in IGARCH is an exponentially weighted moving average of past squared
observations and, as such, is often used by practitioners.

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 15 / 84

DCS Volatility Models

For a DCS model, replace ut in the conditional variance equation

σ2t+1jt = γ+ φσ2t jt�1 + ασ2t jt�1ut ,

by another MD

ut =
(ν+ 1)y2t

(ν� 2)σ2t jt�1 + y2t
� 1, �1 � ut � ν, ν > 2.

which is proportional to the score of the conditional variance.
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Figure: Impact of ut for tν with ν = 3 (thick), ν = 6 (medium dashed) ν = 10
(thin) and ν = ∞ (dashed).
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Exponential DCS Volatility Models

yt = εt exp(λt pt�1), t = 1, ....,T ,

where the serially independent, zero mean variable εt has a tν�distribution
with degrees of freedom, ν > 0, and the dynamic equation for the log of
scale is

λt+1pt = δ+ φλt pt�1 + κut .

The conditional score is

ut =
(ν+ 1)y2t

ν exp(λt jt�1) + y2t
� 1, �1 � ut � ν, ν > 0

NB The variance is equal to the square of the scale, that is
(ν� 2)σ2t jt�1/ν for ν > 2.
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Beta-t-EGARCH

The variable ut may be expressed as

ut = (ν+ 1)bt � 1,

where

bt =
y2t /ν exp(λt pt�1)

1+ y2t /ν exp(λt pt�1)
, 0 � bt � 1, 0 < ν < ∞,

=
ε2t /ν

1+ ε2t /ν

is distributed as Beta(1/2, ν/2).
The u0ts are IID.
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Beta-t-EGARCH: moments

The existence of unconditional moments of the observations, yt , depends
only on the existence of moments of the conditional distribution, that is
the distribution of εt .

The moments of the scale always exist and hence the volatility process
does not a¤ect the existence of unconditional moments.
Analytic expressions for the unconditional moments can be derived for
jyt jc , c � 0.
Can also �nd expresions for autocorrelations of jyt jc .
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Gamma-GED-EGARCH

General Error distribution (GED) leads to Gamma-GED-EGARCH model.
We have

ln L(λ, υ) = �T
�
1+ υ�1

�
ln 2� T ln Γ(1+ υ�1)�

T

∑
t=1

λt pt�1

�1
2

T

∑
t=1
jyt exp(�λt pt�1)jυ ,

where υ is a shape parameter.
The score

ut = (υ/2) jyt/ exp(λt pt�1)jυ � 1,
is gamma distributed.
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Gamma-GED-GARCH*

Assume υ is known and let ξ = ϕυ. Setting the score to zero yields the
ML estimator eξ = υ

2
∑ jyt jυ

T
,

The form of this estimator suggests that, if the scale changes over time, a
weighting scheme should be applied to jyt jυ, giving a variant of
Gamma-GED-GARCH:

ξt+1jt = δ+ φξt jt�1 + θξt jt�1ut ,

Re-writing ξt jt�1 in terms of συ
t jt�1 yields the power ARCH or APARCH

class of models of Ding, Granger and Engle (1993), except that there the
conditional distribution of the observations is normal. (Leverage e¤ects are
also handled di¤erently). Setting υ = 2 gives GARCH whereas υ = 1
gives the equation proposed by Taylor (1986).
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Asymptotic distribution of ML estimator*

Now let θ = θt pt�1 evolve over time as a function of past observations and
past values of the score of the conditional distribution. Since the
conditional score depends on past observatons through θt pt�1, it can be
broken down into two parts: where the notation ft (yt ; θt pt�1) indicates
that the distribution of yt depends on the time-vary

∂ ln ft (yt j Yt�1;ψ)
∂ψ

=
∂ ln ft (yt ; θt pt�1)

∂θt pt�1

∂θt pt�1
∂ψ

,

ing parameter, θt pt�1, and ψ denotes the vector of parameters governing
the dynamics. Since θt pt�1 and its derivatives depend only on past
information, the distribution of the score conditional on information at
time t � 1 is the same as its unconditional distribution and so is time
invariant.
The above decomposition of the conditional score leads to the following
result.
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Asymptotic distribution of ML estimator*

Consider a model with a single time-varying parameter, θt pt�1, which
satis�es an equation that depends on variables which are �xed at time
t � 1. The process is governed by a set of �xed parameters, ψ. Under
cerytain conditions, the conditional score for the t�th observation,
∂ ln ft (yt j Yt�1;ψ)/∂ψ, is a MD at ψ = ψ0, with conditional covariance
matrix

Et�1

�
∂ ln ft (yt j Yt�1;ψ)

∂ψ

��
∂ ln ft (yt j Yt�1;ψ)

∂ψ

�0
= I .

�
∂θt pt�1

∂ψ

∂θt pt�1
∂ψ0

�
, t = 1, ....,T ,

where the information quantitly, I , is constant over time and independent
of ψ.

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 25 / 84

Asymptotic distribution of ML estimator*

Follows because, the conditional covariance matrix of the score is found by
writing its outer product as�

∂ ln ft
∂θt pt�1

∂θt pt�1
∂ψ

��
∂ ln ft

∂θt pt�1

∂θt pt�1
∂ψ

�0
=

�
∂ ln ft

∂θt pt�1

�2 �∂θt pt�1
∂ψ

∂θt pt�1
∂ψ0

�
.

Now take expectations conditional on information at time t � 1. If
Et�1 (∂ ln ft/∂θt pt�1)

2 does not depend on θt pt�1, it is �xed and equal to
the unconditional expectation in the static model. Therefore, since θt pt�1
is �xed at time t � 1,

Et�1

"�
∂ ln ft

∂θt pt�1

∂θt pt�1
∂ψ

��
∂ ln ft

∂θt pt�1

∂θt pt�1
∂ψ

�0#

=

"
E
�

∂ ln ft
∂θ

�2# ∂θt pt�1
∂ψ

∂θt pt�1
∂ψ0 .

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 26 / 84



Asymptotic distribution of ML estimator*

The information matrix is

I(ψ) = I .D(ψ), where D(ψ) = E
�

∂θt pt�1
∂ψ

∂θt pt�1
∂ψ0

�
.

The following de�nitions are needed for D(ψ) :

a = Et�1(xt ) = φ+ κEt�1

�
∂ut

∂λt pt�1

�
= φ+ κE

�
∂ut
∂λ

�
b = Et�1(x2t ) = φ2 + 2φκE

�
∂ut
∂λ

�
+ κ2E

�
∂ut
∂λ

�2
� 0

c = Et�1(utxt ) = κE
�
ut

∂ut
∂λ

�
Because they are time invariant the unconditional expectations can replace
conditional ones.
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Asymptotic distribution of ML estimator*

Then

D(ψ) = D

0@ κ
φ
ω

1A =
1

1� b

24 A D E
D B F
E F C

35 , b < 1,

with

A = σ2u , B =
κ2σ2u(1+ aφ)

(1� φ2)(1� aφ)
, C =

(1� φ)2(1+ a)
1� a ,

D =
aκσ2u
1� aφ

, E =
c(1� φ)

1� a and F =
acκ(1� φ)

(1� a)(1� aφ)
.

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 28 / 84



Asymptotic distribution of ML estimator*

Provided that b < 1 and that the elements of ψ do not lie on the
boundary of the parameter space, the limiting distribution of

p
T (eψ�ψ),

where eψ is the ML estimator of ψ, is multivariate normal with mean zero
and covariance matrix

Var(eψ) = I�1(ψ0)

If the unit root is imposed, so that φ = 1, then standard asymptotics apply.
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Robust estimation and tail behaviour

The Gaussian distribution has kurtosis of three and a distribution is said to
exhibit excess kurtosis if its kurtosis is greater than three.
A distribution is said to be heavy-tailed if

lim
y!∞

exp(y/β)F (y) = ∞ for all β > 0, (6)

where F (y) = Pr(Y > y) = 1� F (y) is the survival function.
When y has an exponential distribution, F (y) = exp(�y/α), so when
β = α, exp(y/α)F (y) = 1 for all y .
The exponential distribution is not heavy-tailed. Nor is GED.
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Robust estimation and tail behaviour

A distribution is said to be fat-tailed if, for a �xed positive value of η,

F (y) = cL(y)y�η, η > 0, (7)

where c is a non-negative constant and L(y) is slowly varying, that is
limy!∞(L(ky)/L(y)) = 1. eg Pareto distribution - F (y) = y�η for
y > 1.
The parameter η is the tail index. The implied PDF is a power law PDF

f (y) � cL(y)ηy�η�1, η > 0, (8)

The m-th moment exists if m < η.
The complement to the power law PDF is

f (y) � cL(y)ηy η�1 as y ! 0, 0 < y < 1, η > 0.
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EGB2 ( work with Michele Caivano)

The exponential generalized beta distribution of the second kind (EGB2) is
obtained by taking the logarithm of a variable with a GB2 distribution.
The PDF of a GB2 is

f (x) =
ν(x/α)νξ�1

αB(ξ, ς)
�
(x/α)ν + 1

�ξ+ς
, α, ν, ξ, ς > 0,

where α is the scale parameter, ν, ξ and ς are shape parameters and
B(ξ, ς) is the beta function; see Kleiber and Kotz (2003, ch6).
The GB2 distribution contains many important distributions as special
cases, including the Burr (ξ = 1) and log-logistic (ξ = 1, ς = 1).
GB2 distributions are fat tailed for �nite ξ and ς with upper and lower tail
indices of η = ςν and η = ξν respectively.
The absolute value of a tf variate is GB2(ϕ, 2, 1/2, f /2) with tail index is
η = η = f .
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EGB2

If x is distributed as GB2(α, ν, ξ, ς) and y = ln x , the PDF of the EGB2
variate y is

f (y ; µ, ν, ξ, ς) =
ν expfξ(y � µ)νg

B(ξ, ς)(1+ expf(y � µ)νg)ξ+ς
.

What was the logarithm of scale in GB2 now becomes location in EGB2,
that is ln α becomes µ. Furthermore ν is now a scale parameter, but ξ and
ς are still shape parameters and they determine skewness and kurtosis.
All moments exist.
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EGB2

When ξ = ς, the distribution is symmetric; for ξ = ς = 1 it is a logistic
distribution and when ξ = ς ! ∞ it tends to a normal distribution.
For ξ = ς = 0, the distribution is double exponential or Laplace.
Similar coverage to GED but asymptotics more standard. Also general
form allows skewness,

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 34 / 84



Dynamic location model

The score function for the EGB2 distribution with respect to location is

∂ ln ft
∂µt pt�1

= ν(ξ + ς)bt (ξ, ς)� νξ, t = 1, ...,T ,

where

bt (ξ, ς) =
e(yt�µt pt�1)ν

e(yt�µt pt�1)ν + 1
.

Because 0 � bt (ξ, ς) � 1, it follows that as y ! ∞, the score approaches
an upper bound of νς, whereas y ! �∞ gives a lower bound of νξ.
Gentle form of Winsorizing as opposed to trimming.
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EGB2-EGARCH

As in the dynamic location case, the EGB2 distribution o¤ers an alternative
to the GED for capturing responses between the normal and Laplace.
Wang et al (2001) �tted GARCH-EGB2 models to daily dollar exchange
rates and found evidence to favour them over GARCH-t alternatives.
The �rst-order dynamic scale model with EGB2 distributed errors is

yt = µ+ exp(λt jt�1)εt , t = 1, ...,T ,

where εt is a standardized (µ = 0, ν = 1) EGB2, that is
εt � EGB2(0, 1, ξ, ς). The dynamic equation is

λt+1jt = ω(1� φ) + φλt jt�1 + κut ,

where ut is now the score with respect to λt jt�1.
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EGB2-EGARCH

The conditional score is

ut =
∂ ln f (yt )
∂λt jt�1

= (ξ + ς)εtbt � ξεt � 1,

and

bt =
expf(y � µ)e�λt jt�1g

1+ expf(y � µ)e�λt jt�1g
=

exp εt
1+ exp εt

.

At the true parameters values, bt � beta(ξ, ς) as in the score for the
dynamic location model.
Figure compares the way observations are weighted by the score of a
EGB2 distribution with ξ = ς = 0.5, a Student�s t7 distribution and a
GED(1.148).
Consistent with this relationship and the Winsorizing of the location score,
dividing ut by εt gives a bounded function as jεt j ! ∞
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Non-negative variables: duration, realized volatility and
range

Engle (2002) introduced a class of multiplicative error models (MEMs) for
modeling non-negative variables, such as duration, realized volatility and
range.
The conditional mean, µt pt�1, and hence the conditional scale, is a
GARCH-type process. Thus

yt = εtµt pt�1, 0 � yt < ∞, t = 1, ....,T ,

where εt has a distribution with mean one and, in the �rst-order model,

µt pt�1 = βµt�1jt�2 + αyt�1.

The leading cases are the gamma and Weibull distributions. Both include
the exponential distribution.
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Non-negative variables: duration, realized volatility and
range

An exponential link function, µt pt�1 = exp(λt pt�1), not only ensures that
µt pt�1 is positive, but also allows the asymptotic distribution to be derived.
The model can be written

yt = εt exp(λt pt�1)

with dynamics
λt pt�1 = δ+ φλt�1pt�2 + κut�1,

where, for a Gamma distribution

ut = (yt � exp(λt pt�1))/ exp(λt pt�1)
The response is linear but this is not the case for Weibull. The PDF is

f (y ; α, υ) =
υ

α

�y
α

�υ�1
exp (�(y/α)υ) , 0 � y < ∞, α, υ > 0,

where α is the scale and υ is the shape parameter. When υ < 1 it is
long-tailed. Score is concave.
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Weibull score functions for υ = 0.5, exponential (υ = 1, thin) and υ = 2
(dashes)
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Log-logistic distribution

f (y) = (ν/α)(y/α)ν�1(1+ (y/α)ν)�2, ν, α > 0.

A time-varying scale with an exponential link function, ie
αt pt�1 = expλt pt�1, gives

ln ft (ψ, ν) = ln ν� νλt pt�1 + (ν� 1) ln yt � 2 ln(1+ (yte�λt pt�1)ν),

and so

∂ ln ft
∂λt pt�1

= ut =
2ν(yte�λt pt�1)ν

1+ (yte�λt pt�1)ν
� ν = 2νbt (1, 1)� ν,

where

bt (1, 1) =
(yte�λt pt�1)ν

1+ (yte�λt pt�1)ν

is distributed as beta(1, 1). Since a beta(1, 1) distribution is a standard
uniform distribution, it is immediately apparent that the expectation of ut
is zero.
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Figure: Impact of u for a log-logistic distribution and a gamma (dashed), with
shape parameters ν = 3 and γ = 2 respectively.
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Log-logistic distribution

The asymptotic theory is not complicated. Di¤erentiating the score gives

∂ut
∂λt pt�1

= �2ν2bt (1� bt ).

Proposition

Provided that b < 1, the limiting distribution of
p
T (eψ0 �ψ0, eν� ν)0 is

multivariate normal with zero mean and covariance matrix

Var
� eψeν

�
=

�
(3/ν2)D�1(ψ) 0

00 1.430ν2

�
,

where 0 is a vector of zeroes and D(ψ) is as given earlier with

a = φ� κν2/3
b = φ2 � (2/3)ν2φκ + 2κ2ν4/15 and c = 0.
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Generalized gamma and beta distributions

The statistical theory of DCS models for non-negative variables is
simpli�ed by the fact that for the gamma and Weibull distributions the
score and its derivatives are dependent on a gamma variate, while for the
Burr, log-logistic and F-distributions the dependence is on a beta variate.
Gamma and Weibull distributions are special cases of the generalized
gamma distribution.
Burr and log-logistic distributions are special cases of the generalized beta
distribution.
The F�distribution is related to the generalized beta distribution in that
the special case when the degrees of freedom are the same is equivalent to
a special case of the generalized beta.
Members of the generalized beta class are particularly useful in situations
where there is evidence of heavy tails.
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Other Volatility models: Classic EGARCH

yt = εt exp(λt pt�1), t = 1, ....,T ,

λt+1pt = δ+ φλt pt�1 + κgt .

but the dynamics are driven by:

gt = jεt j � E jεt j = jεt j � µjεj.

where the leverage term, εt , has been dropped.
ML estimator is consistent and asymptotically normal. Analytic
information matrix similar to DCS models
For t-distribution - classic EGARCH is of academic interest only - it
has no moments.
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Log-EGARCH

Nelson (1991, p 91) - mentions Econometric Reviews, 1986. Francq and
Zakoian (2013, JE)

gt = ln jεt j � E ln jεt j
so

λt+1jt = ω(1� φ) + φλt jt�1 + κ(ln jεt j � E (ln jεt j))

The unconditional moments depend on the existence of E (jεt jmψmax) and
E (jεt jmψmin) because E (expmψkgt ) = E (jεt j

mψk ).
In Beta-t-EGARCH, the existence of unconditional moments depends
solely on ν.
As with classic EGARCH, ML estimator is consistent and asymptotically
normal. Analytic information matrix similar to DCS models
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Figure: Impact of u for tν with ν = 3 (thick), ν = 10 (thin) and ν = ∞ (dashed).
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QML

QML is consistent, provided that the dynamics are right.
Only attractive if (i) relatively easy to compute (especially compared with
ML eg SV model), (ii) reasonably e¢ cient over a wide range of
distributions; (iii) parameters have some meaning eg we want variance.
If (i) holds then might use as starting values.
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QML

Can compare asymptotic distribution with that of an ML estimator for a
model in which the dynamic equation is the same.
Let bψ be the estimator obtained by maximizing a quasi-likelihood function
wrt a vector of parameters, ψ, that determine the dynamic evolution of a
time-varying parameter, θt pt�1. Then bψ is asy normal with

Var(bψ) = �E �∂2 ln ft
∂θ2

���2
E

"�
∂ ln ft

∂θ

�2#
D�1(ψ)

E¢ ciency is

E¤ (bψi ) =
h
E
�

∂2 ln ft
∂θ2

�i2
I .E

��
∂ ln ft

∂θ

�2� , i = 1, ...,m,

where I is the information quantity for the true distribution.
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Conclusions on di¤erent dynamics and QML

The shortcomings of (i) jεt j - no moments for heavy-tailed distributions -
and (ii) ln jεt j - problem when y = 0� (highlights the bene�ts of the score
!)
Thus jεt j is not viable for t and ln jεt j is not a good way to handle
light-tailed. Need to decide whether the tails are su¢ ciently heavy to
justify having the dynamics driven by the log.
Backed up by e¢ ciency. GB2 and t could be very ine¢ cient for QML in
levels. Light-tailed ine¢ cient for QML in logs.
Both considerations together suggest :
(1) with light tailed use classic form for dynamics with QML on the
level

and
(2) with heavy tailed use log form for dynamics with QML on the
log.
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Conclusions on di¤erent dynamics and QML

Decision on whether to do QML in logs or levels and whether to specify
the dynamics as being driven by jεt j or ln jεt j requires that the researcher
takes a stance on the kind of distribution likely to be encountered.
Half-way towards specifying a distribution. Why not therefore �t t and
EGB2 and compare the �t ?
Why not by-pass the whole issue of which dynamic equation to use by
having a DCS model and estimating it by ML?

NB The coherency principle suggests that classic EGARCH should be
coupled with minimization of absolute values, that is

ρ(λt jt�1; yt ) =
T

∑
t=1

��yt exp(�λt jt�1)
�� .

QML minimizes a sum of squares function and so would have a
GARCH-type equation in squares - this is clearly useless in EGARCH
because it lacks moments when there is excess kurtosis.
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Conclusions on di¤erent dynamics and QML

Same issues for MEM or ACD models.
Bauwens et al (2004) propose a �log-ACD�speci�cation has the
conditional mean set to µt pt�1 = exp(λ

�
t pt�1), where

λ�t+1pt = δ+ βλ�t pt�1 + α ln yt
or

λ�t+1pt = δ+ βλ�t pt�1 + αyt exp(�λ�t pt�1).

Better to use a DCS model with a GG or a GB2.
Such DCS models �t better - see Andres and Harvey (2012). Andres
(2013) provides more details.
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Robust estimators

M-estimators. Time series models coherent when dynamics driven by
ρ0(.; .).
Analytic information matrix di¢ cult to derive, though asymptotics will
surely go through.
But nothing to be gained compared with a parametric approach.
Just �t a t or EGB2.
The fundamental case for DCS comes from the fact that it is a coherent,
likelihood based approach.
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Dynamic shape parameters

Generalized Pareto distribution reparameterized so that

p(y) = α�1ς [1+ (y � y0)/α]�(ς+1) , α > 0, 0 < ς < ∞,

Special case of the Burr distribution in which ν = 1. (Exponential when
ς ! ∞.) The scale parameter may therefore be allowed to evolve over
time, according to αt pt�1 = exp(λt pt�1), and the moments, forecasts and
asymptotic distribution can be found from the general results for the GB2
distribution.
The tail index is ς. If it is time-varying, we might set ςt pt�1 = exp(θt pt�1)
so no constraints are needed. With this parameterization

I
�

λ
θ

�
=

"
e θ

2+e θ
�1
1+e θ

�1
1+e θ 1

#
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Dynamic shape parameters

The Pareto distribution is obtained with α = 1 and y0 = 1, because
p(y) = ς [1+ (y � 1)]�(ς+1) = ςy�ς�1, y � 1. With
ςt pt�1 = exp(θt pt�1), the score is

u = 1� eθ ln y , y � 1.

Because ln y is exponentially distributed with scale 1/ς, all its moments
exist and it can be seen immediately that the mean of the score is zero.
Unlike the score for scale in the Burr, this is not bounded. However,
I (θ) = 1 and the information matrix for the �rst-order DCS model has

a = φ� κ, b = φ2 � 2φκ + 2κ2, c = 1

Furthermore u0 = u00 = �eθ ln y and it is not di¢ cult to see that the
conditions on p 40-45 of Harvey (2013) are satis�ed.
Not surprising as the shape parameter becomes a scale parameter when
logs are taken. (cf GB2 and EGB2)
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Dynamic shape parameters

Dynamic degrees of freedom,ν, in t-distribution. Score is

uν = �
1
2

Psi (ν/2) +
1
2

Psi ((ν+ 1)/2)� 1
2ν
+

ν+ 1
2ν

b+
1
2
ln(1� b)

where b is beta(1/2, ν/2).
Figure shows uν and then compares score for � ln ν with the score for
scale (ν = 3)
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Correlation and copulas: Estimating changing correlation

Assume a bivariate model with a conditional Gaussian distribution. Zero
means and variances time-invariant.
How should we drive the dynamics of the �lter for changing correlation,
ρt jt�1, and with what link function ?
Specify the standard deviations with an exponential link function so
Var(yi ) = exp(2λi ), i = 1, 2.
A simple moment approach would use

y1t
exp(λ1)

y2t
exp(λ2)

= x1tx2t ,

to drive the covariance, but the e¤ect of x1 = x2 = 1 is the same as
x1 = 0.5 and x2 = 4.
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Estimating changing correlation

Better to transform ρt jt�1 to keep it in the range, �1 � ρt jt�1 � 1. The
link function

ρt jt�1 =
exp(2γt jt�1)� 1
exp(2γt jt�1) + 1

allows γt jt�1 to be unconstrained. The inverse is the arctanh
transformation originally proposed by Fisher to create the z-transform (his
z is our γ) of the correlation coe¢ cient, r , which has a variance that
depends on ρ.
tanh�1 r is asymptotically normal with mean tanh�1 ρ and variance 1/T .
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Estimating changing correlation

The dynamic equation for correlation is de�ned as

γt+1jt = (1� φ)ω+ φγt jt�1 + κut , t = 1, ...,T .

Setting xi = yi exp(�λi ), i = 1, 2,gives the score as

∂ ln ft
∂γt jt�1

= uγt =
(x1t + x2t )2

4
exp(�2γt jt�1)

� (x1t � x2t )
2

4
exp(2γt jt�1) +

exp(2γt jt�1)� 1
exp(2γt jt�1) + 1

,

where the �rst two terms are mutually uncorrelated.
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Written in terms of ρt jt�1,

uγt =
(x1t + x2t )2

4

1� ρt jt�1
1+ ρt jt�1

� (x1t � x2t )
2

4

1+ ρt jt�1
1� ρt jt�1

+ ρt jt�1. (7.17)

The score reduces to x1tx2t when ρt jt�1 = 0, but when ρt jt�1 is close to
one, the weight given to (x1t + x2t )2 is small and the second term
dominates unless x1t and x2t are very close; in this case x1t and x2t
provide evidence of strong correlation and there is little reason to reduce
ρt jt�1. As ρt jt�1 becomes smaller, the �rst term in (7.17) becomes
relatively more important, leading to an increase in correlation when x1t
and x2t are close. The dashed line in Figure ? shows what happens when
x1t = x2t . The solid line tells a di¤erent story: here, x1t and x2t are not
very close and so when ρt jt�1 is near one, it is reduced in the next time
period, the reduction being bigger the closer it is to one.
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Plot of standardized score, u, against correlation, r , for x1 = x2 (dash) and
x1 = 4, x2 = 1.
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Dynamic copulas: estimating changing association

The conditional score for the Clayton copula is

∂ ln f (y1t , y2t , θt jt�1)

∂θt jt�1
= � ln(τ1tτ2t ) + (1+ θt jt�1)

�1 + θ�2 ln(τ
�θt jt�1
1t + τ

�θt jt�1
2t � 1)

+

 
1+ 2θt jt�1

θt jt�1

!
(τ
�θt jt�1
1t ln τ1t + τ

�θt jt�1
2t ln τ2t )

τ
�θt jt�1
1t + τ

�θt jt�1
2t � 1

,

where τit = F (yit ), i = 1, 2. The response to a pair of observations is not
as readily interpretable as it is for the bivariate normal distribution.
However, the basic point to note is that the �rst term involves the product
τ1tτ2t , and so is a little like the product x1tx2t . In the Gaussian model the
score modi�es the impact of x1tx2t by taking account of how the product
was formed and the current parameter value. The same is true here.
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Dynamic copulas: estimating changing association

Figure shows the response of the score when τ2 varies, but τ1 is �xed.
Two points are worth noting.
1) As expected, the response is asymmetric in the sense that the behaviour
when τ1 �xed at 0.9 is not a mirror image of the behaviour for τ1 �xed at
0.1.
2) When τ1 = 0.1, the score is only positive for vaues of τ2 close to 0.1,
the e¤ect being more pronounced when θ = 5, as opposed to θ = 1. This
behaviour is entirely consistent with the conditional density shown earlier :
if τ2 is not close to 0.1, it suggests that θt jt�1 is too big and the role of
the negative score in the dynamic equation is to make θt+1jt smaller.
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Figure: Response of u for �xed τ1
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Nonparametric and kernels

Using a sample of T observations drawn from a distribution F (y) with a
corresponding probability density function f (y), a kernel estimator of f (y)
at point y is given by

f T (y) =
1
Th

T

∑
i=1
K
�
y � yi
h

�
, (9)

where K (.) is the kernel and h is the bandwidth. The kernel, K (�), is
symmetric about the origin and everywhere non-negative. It integrates to
one when divided by h.
The Epanechnikov kernel is

K (z) =

(
3
4
p
5
(1� z 2

25 ), jz j <
p
5

0, jz j �
p
5

. (10)
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Nonparametric and kernels- �ltering

A weighting scheme may be introduced into the kernel estimator so as to
make predictions of the density at time t + 1, based on information at
time t. Thus

ft+1jt (y) =
1
h

t

∑
i=1
K
�
y � yi
h

�
wt ,i , t = 1, ...,T , (11)

while, for the distribution function,

Ft+1jt (y) =
t

∑
i=1
H
�
y � yi
h

�
wt ,i . (12)

The weights, wt ,i , i = 1, ..., t, t = 1, ...,T , may change over time,
although in the steady-state, wt ,i = wt�i . For an EWMA scheme, the
weights sum to unity. The expressions for smoothing are similar except
that the summations run from t = 1 to T .
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Nonparametric and kernels- �ltering

Filters may be constructed for the predictive density for a given value of y .
The �rst-order �lter is

ft+1jt (y) = δy + βft jt�1(y) + α
1
h
K
�
y � yt
h

�
, t = 1, ..,T ,

where α � 0, β � 0 and δy > 0. Alternatively,

ft+1jt (y) = δy + φft jt�1(y) + κut , t = 1, ..,T , (13)

where φ = α+ β, κ = α and the innovation for the density is

ut (y) =
1
h
K
�
y � yt
h

�
� ft jt�1(y), (14)

which is similar in form to the conditional score in a DCS model.
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Nonparametric and kernels- �ltering

The �lter updates the estimate of the PDF at y . The maximum impact is
when there is a direct hit, that is the observation coincides with y . In this
case h�1K (0)� ft jt�1(y) must be positive. On the other hand an
observation far from y will have little or no e¤ect and so ut (y) is close to
�ft jt�1(y). Figure 7 shows the impact of an Epanechnikov kernel (10)
with ft jt�1(y) (arbitrarily) set to 0.1.
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Figure: Impact of Epanechnikov kernel when ft jt�1(y) = 0.1
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Nonparametric and kernels- estimation

The recursive nature of the �lter leads naturally, but perhaps surprisingly,
to a maximum likelihood procedure for estimating unknown parameters, as
contained in a vector denoted ψ. These parameters include the bandwidth,
h, as well as any parameters governing the dynamics, such as κ and φ.
The log-likelihood function is

ln L(ψ) =
T�1
∑
t=m

ln ft+1jt (yt+1) (15)

=
T�1
∑
t=m

ln

"
1
h

t

∑
i=1
K
�
yt+1 � yi

h

�
wt ,i

#
,

where, for a nonstationary �lter m is some preset number of observations
used to initialize
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Direct estimation of individual quantiles

The τ � th quantile for a set of T observations, eξ(τ), can be obtained as
the solution to the minimization of

ρτ(ξ) =
T

∑
t=1

ρτ(yt � ξ) (16)

with respect to ξ = ξ(τ), where ρτ(.) is the check function for quantiles,
that is

ρτ(yt � ξ) = (τ � I (yt � ξ < 0)) (yt � ξ) , (17)

where I (.) is one when yt < 0 and zero otherwise.
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Direct estimation of individual quantiles

Di¤erentiating ρ where it is continuous gives the quantile indicator
function:

IQ(yt � ξt (τ)) =

�
τ � 1, if yt < ξt (τ)

τ, if yt > ξt (τ)
, t = 1, ...,T ,

IQ(0) is not determined, but can be set to zero.
Estimating generating equation because

T

∑
t=1
IQ(yt � ξt (τ)) = 0
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Direct estimation of individual quantiles

The smoothing approach to estimating time-varying quantiles results in
their having the following important property when the dynamic equation
is a stochastic level or trend.
The number of observations which are less than the corresponding
quantile, that is the number of occasions on which yt < ξt jT for
t = 1, ...,T , is no more than [Tτ], while the number greater is no more
than [T (1� τ)].
When the trend reverts to a constant, the usual de�ning feature of
quantiles is satis�ed.

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 79 / 84

Direct estimation of individual quantiles - and expectiles*

Expectiles, denoted µ(ω), 0 < ω < 1, are similar to quantiles but they are
determined by tail expectations rather than tail probabilities. For a given
value of ω, the sample expectile, eµ(ω), is obtained by minimizing the
asymmetric least squares function,

Sω(µ) = ∑ ρω(yt � µ) = ∑ jω� I (yt � µ < 0)j (yt � µ)2,

with respect to µ. See De Rossi and Harvey (2009)

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge)HIGHLIGHTS OF THE SCORE December 2013 80 / 84



Direct estimation of individual quantiles

The smoothed estimate of a quantile at the end of the sample is the
�ltered estimate. For the EWMA scheme derived from the local level
model, the �ltered estimator must satisfy

ξt+1jt = κ
∞

∑
j=0
(1� κ)j [ξt�j jt + IQ(yt�j � ξt�j jt )];

Thus ξt+1jt is an EWMA of the pseudo-observations,
ξt�j jt + IQ(yt�j � ξt�j jt ). As new observations become available, the
smoothed estimates need to be revised.
However, �ltered estimates could be used instead, so

ξt+1jt (τ) = ξt jt�1(τ) + κut (τ),

where ut (τ) = IQ(yt � ξt jt�1(τ)) is an indicator which plays a similar role
to that of the conditional score in a DCS model.
Asymptotics ?
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Direct estimation of individual quantiles

The �lter belongs to the class of CAViaR models proposed by Engle and
Manganelli (2004) in the context of tracking value at risk. In CAViaR, the
�rst-order conditional quantile is a GARCH-type �lter of the form

bξt+1jt (τ) = δ+ βbξt jt�1(τ) + αq(yt ),

where q(yt ) is a function of yt . Suggested speci�cations include an
adaptive model, which in a limiting case has the same form as the �lter for
ξt+1jt (τ) with α = κ and, in the general �rst-order model, β = φ� κ.
Other CAViaR speci�cations, which are based on actual values, rather than
indicators, may su¤er from a lack of robustness to additive outliers. See
Figure 1 in Engle and Manganelli (2004, p. 373). The evidence on
predictive performance in Kuester et al (2006, p. 80-1) indicates a
preference for the adaptive speci�cation.
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Direct estimation of individual quantiles

The advantage of �tting individual quantiles is that di¤erent parameters
may be estimated for di¤erent quantiles. The disadvantage is that the
quantiles may cross; see Gourieroux and Jasiek (2008).

If the parameters across quantiles have to be the same to prevent them
crossing, the ability to have di¤erent models for di¤erent quantiles loses
much of its appeal.
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Direct estimation of individual quantiles

The conditional mode signal extraction argument used to derive the
quantiles may be adapted to the dynamic kernel by de�ning

ρ(yt jft (y)) = �
1
2

�
1
h
K
�
yt � y
h

�
� ft (y)

�2
for all admissible values of y . For a given value of y , di¤erentiating this
new criterion function with respect to ft (y) for all t, setting the
derivatives to zero and solving, gives the smoothed estimate, ft jT (y). The
residuals are

ut (ft jT (y)) =
1
h
K
�
yt � y
h

�
� ft jT (y), t = 1, ...,T .

For all y , ∑T
t=1 ut (ft jT (y)) = 0. The variable driving the �lter, that is

ut (y), is of the same form as ut (ft jT (y)).
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